Code and text for Quiz 4.
Download \(CO_2\) emissions per capita from Our World in Data into the directory for this post.
Assign the location of the file to file_csv
. The data should be in the same directory as this file
Read the data into R and assign it to emissions
emissions
emissions
# A tibble: 23,949 × 4
Entity Code Year `Share of global cumulative CO2 emissions`
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0
2 Afghanistan AFG 1950 0
3 Afghanistan AFG 1951 0
4 Afghanistan AFG 1952 0
5 Afghanistan AFG 1953 0
6 Afghanistan AFG 1954 0
7 Afghanistan AFG 1955 0
8 Afghanistan AFG 1956 0
9 Afghanistan AFG 1957 0
10 Afghanistan AFG 1958 0
# … with 23,939 more rows
emissions
data THENclean_names
from the janitor package to make the names easier to work withtidy_emissions
tidy_emissions
tidy_emissions <- emissions %>%
clean_names()
tidy_emissions
# A tibble: 23,949 × 4
entity code year share_of_global_cumulative_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0
2 Afghanistan AFG 1950 0
3 Afghanistan AFG 1951 0
4 Afghanistan AFG 1952 0
5 Afghanistan AFG 1953 0
6 Afghanistan AFG 1954 0
7 Afghanistan AFG 1955 0
8 Afghanistan AFG 1956 0
9 Afghanistan AFG 1957 0
10 Afghanistan AFG 1958 0
# … with 23,939 more rows
tidy_emissions
THENfilter
to extract rows with year == 1997
THENskim
to calculate the descriptive statisticsName | Piped data |
Number of rows | 231 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
entity | 0 | 1.00 | 4 | 32 | 0 | 231 | 0 |
code | 13 | 0.94 | 3 | 8 | 0 | 218 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
year | 0 | 1 | 1997.0 | 0.00 | 1997 | 1997 | 1997.00 | 1997.0 | 1997 | ▁▁▇▁▁ |
share_of_global_cumulative_co2_emissions | 0 | 1 | 1.7 | 8.21 | 0 | 0 | 0.02 | 0.2 | 100 | ▇▁▁▁▁ |
# A tibble: 13 × 4
entity code year share_of_global_cumulative_…
<chr> <chr> <dbl> <dbl>
1 Africa <NA> 1997 2.17
2 Asia <NA> 1997 19.1
3 Asia (excl. China & India) <NA> 1997 10.8
4 EU-27 <NA> 1997 21.9
5 EU-28 <NA> 1997 28.7
6 Europe <NA> 1997 40.5
7 Europe (excl. EU-27) <NA> 1997 18.7
8 Europe (excl. EU-28) <NA> 1997 11.8
9 International transport <NA> 1997 1.94
10 North America <NA> 1997 33.0
11 North America (excl. USA) <NA> 1997 3.49
12 Oceania <NA> 1997 1.12
13 South America <NA> 1997 2.08
Entities that are not countries do not have country codes.
filter
to extract rows with year == 1997 and without missing codes THENselect
to drop the year
variable THENrename
to change the variable entity
to country
emissions_1997
share_of_global_cumulative_co2_emissions
?emissions_1997
THENslice_max
to extract the 15 rows with the share_of_global_cumulative_co2_emissions
max_15_emitters
share_of_global_cumulative_co2_emissions
?emissions_1997
THENslice_max
to extract the 15 rows with the lowest valuesmin_15_emitters
bind_rows
to bind together the max_15_emitters
and min_15_emitters
max_min_15
max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
max_min_15
to 3 file formatsmax_min_15_csv <- read_csv("max_min_15.csv") # comma separated values
max_min_15_tsv <- read_tsv("max_min_15.tsv") # tab separated
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|") # pipe separated
setdiff
to check for any differences among max_min_15_csv
, max_min_15_tsv
and max_min_15_psv
setdiff(max_min_15_csv, max_min_15_tsv, max_min_15_psv)
# A tibble: 0 × 3
# … with 3 variables: country <chr>, code <chr>,
# share_of_global_cumulative_co2_emissions <dbl>
Are there any differences?
country
in max_min_15
for plotting and assign to max_min_15_plot_dataemissions_1997
THENmutate
to reorder country
according to share_of_global_cumulative_co2_emissions
max_min_15_plot_data
ggplot(data = max_min_15_plot_data,
mapping = aes(x = share_of_global_cumulative_co2_emissions, y = country))
geom_col()
geom_col: width = NULL, na.rm = FALSE
stat_identity: na.rm = FALSE
position_stack
labs(title = "The top 15 and bottom 15 per capita CO2 emissions",
subtitle = "for 1997",
x = NULL,
y = NULL)
$x
NULL
$y
NULL
$title
[1] "The top 15 and bottom 15 per capita CO2 emissions"
$subtitle
[1] "for 1997"
attr(,"class")
[1] "labels"
preview: preview.png