Reading and Writing Data

Code and text for Quiz 4.

  1. Load the packages that we will use.
  1. Download \(CO_2\) emissions per capita from Our World in Data into the directory for this post.

  2. Assign the location of the file to file_csv. The data should be in the same directory as this file

Read the data into R and assign it to emissions

file_csv <- here("_posts",
                 "2022-02-17-reading-and-writing-data",
                 "co-emissions-per-capita.csv")

emissions <- read_csv(file_csv)
  1. Show the first 10 rows (observations of) emissions
emissions
# A tibble: 23,949 × 4
   Entity      Code   Year `Share of global cumulative CO2 emissions`
   <chr>       <chr> <dbl>                                      <dbl>
 1 Afghanistan AFG    1949                                          0
 2 Afghanistan AFG    1950                                          0
 3 Afghanistan AFG    1951                                          0
 4 Afghanistan AFG    1952                                          0
 5 Afghanistan AFG    1953                                          0
 6 Afghanistan AFG    1954                                          0
 7 Afghanistan AFG    1955                                          0
 8 Afghanistan AFG    1956                                          0
 9 Afghanistan AFG    1957                                          0
10 Afghanistan AFG    1958                                          0
# … with 23,939 more rows
  1. Start with emissions data THEN
tidy_emissions <- emissions %>% 
  clean_names()

tidy_emissions
# A tibble: 23,949 × 4
   entity      code   year share_of_global_cumulative_co2_emissions
   <chr>       <chr> <dbl>                                    <dbl>
 1 Afghanistan AFG    1949                                        0
 2 Afghanistan AFG    1950                                        0
 3 Afghanistan AFG    1951                                        0
 4 Afghanistan AFG    1952                                        0
 5 Afghanistan AFG    1953                                        0
 6 Afghanistan AFG    1954                                        0
 7 Afghanistan AFG    1955                                        0
 8 Afghanistan AFG    1956                                        0
 9 Afghanistan AFG    1957                                        0
10 Afghanistan AFG    1958                                        0
# … with 23,939 more rows
  1. Start with the tidy_emissions THEN
tidy_emissions %>% 
  filter(year == 1997) %>% 
  skim()
Table 1: Data summary
Name Piped data
Number of rows 231
Number of columns 4
_______________________
Column type frequency:
character 2
numeric 2
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
entity 0 1.00 4 32 0 231 0
code 13 0.94 3 8 0 218 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1 1997.0 0.00 1997 1997 1997.00 1997.0 1997 ▁▁▇▁▁
share_of_global_cumulative_co2_emissions 0 1 1.7 8.21 0 0 0.02 0.2 100 ▇▁▁▁▁
  1. 13 observations have a missing code. How are these observations different?
tidy_emissions %>% 
  filter(year == 1997, is.na(code))
# A tibble: 13 × 4
   entity                     code   year share_of_global_cumulative_…
   <chr>                      <chr> <dbl>                        <dbl>
 1 Africa                     <NA>   1997                         2.17
 2 Asia                       <NA>   1997                        19.1 
 3 Asia (excl. China & India) <NA>   1997                        10.8 
 4 EU-27                      <NA>   1997                        21.9 
 5 EU-28                      <NA>   1997                        28.7 
 6 Europe                     <NA>   1997                        40.5 
 7 Europe (excl. EU-27)       <NA>   1997                        18.7 
 8 Europe (excl. EU-28)       <NA>   1997                        11.8 
 9 International transport    <NA>   1997                         1.94
10 North America              <NA>   1997                        33.0 
11 North America (excl. USA)  <NA>   1997                         3.49
12 Oceania                    <NA>   1997                         1.12
13 South America              <NA>   1997                         2.08

Entities that are not countries do not have country codes.

  1. Start with tidy_emissions THEN
emissions_1997 <- tidy_emissions %>% 
  filter(year == 1997, !is.na(code)) %>% 
  select(-year) %>% 
  rename(country = entity)
  1. Which 15 countries have the highest share_of_global_cumulative_co2_emissions?
max_15_emitters <- emissions_1997 %>%
  slice_max(share_of_global_cumulative_co2_emissions, n = 15)
  1. Which 15 countries have the lowest share_of_global_cumulative_co2_emissions?
min_15_emitters <- emissions_1997 %>% 
  slice_min(share_of_global_cumulative_co2_emissions, n = 15)
  1. Use bind_rows to bind together the max_15_emitters and min_15_emitters
max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
  1. Export max_min_15 to 3 file formats
max_min_15 %>% write_csv("max_min_15.csv") # comma separated values
max_min_15 %>% write_tsv("max_min_15.tsv") # tab separated
max_min_15 %>% write_delim("max_min_15.psv", delim = "|") # pipe separated
  1. Read the 3 file formats into R
max_min_15_csv <- read_csv("max_min_15.csv") # comma separated values
max_min_15_tsv <- read_tsv("max_min_15.tsv") # tab separated
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|") # pipe separated
  1. Use setdiff to check for any differences among max_min_15_csv, max_min_15_tsv and max_min_15_psv
setdiff(max_min_15_csv, max_min_15_tsv, max_min_15_psv)
# A tibble: 0 × 3
# … with 3 variables: country <chr>, code <chr>,
#   share_of_global_cumulative_co2_emissions <dbl>

Are there any differences?

  1. Reorder country in max_min_15 for plotting and assign to max_min_15_plot_data
max_min_15_plot_data <- max_min_15 %>% 
  mutate(country = reorder(country, share_of_global_cumulative_co2_emissions))
  1. Plot max_min_15_plot_data
ggplot(data = max_min_15_plot_data,
       mapping = aes(x = share_of_global_cumulative_co2_emissions, y = country))
geom_col: width = NULL, na.rm = FALSE
stat_identity: na.rm = FALSE
position_stack 
 labs(title = "The top 15 and bottom 15 per capita CO2 emissions",
      subtitle = "for 1997",
      x = NULL,
      y = NULL)
$x
NULL

$y
NULL

$title
[1] "The top 15 and bottom 15 per capita CO2 emissions"

$subtitle
[1] "for 1997"

attr(,"class")
[1] "labels"
  1. Save the plot directory with this post
ggsave(filename = "preview.png",
       path = here("_posts", "2022-02-17-reading-and-writing-data"))
  1. Add preview.png to yaml chuck at the top of this file

preview: preview.png